Disjoint path covers of hypertori

Let G be a simple graph, and let V be the vertex set of G. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ be disjoint subsets of V. A paired disjoint k-path cover of G is a subgraph of G consisting of paths $P_{1}, P_{2}, \ldots, P_{k}$ such that

- each path P_{i} has endpoints s_{i} and t_{i}, and
- the vertex sets of the paths partition V.

We will abbreviate the term "paired disjoint k-path cover" as " k-path cover". If G has a k-path cover for every choice of S and T, then G is said to be paired k-to- k disjoint path coverable. If $k=1$, then G is also said to be Hamiltonian connected.

Let G be a bipartite graph with partite sets V_{1} and V_{2}. Let $\left|V_{1}\right|-\left|V_{2}\right|=\delta$. We say that $S \cup T$ is balanced if $\left|(S \cup T) \cap V_{1}\right|-\left|(S \cup T) \cap V_{2}\right|=2 \delta$. Note that $S \cup T$ being balanced is a necessary condition for the bipartite graph G to have a k-path cover with endpoints S and T. If G has a k-path cover for every choice of S and T such that $S \cup T$ is balanced, then G is said to be balanced paired k-to-k disjoint path coverable. If $k=1$, then G is also said to be Hamiltonian laceable.

Let n be a positive integer, and let $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be an n-tuple of integers such that $d_{i} \geq 2$ for all i. A hypertorus Q_{n}^{d} is a simple graph defined on the vertex set $\left\{\left(v_{1}, v_{2}, \ldots, v_{n}\right): 0 \leq v_{i} \leq d_{i}-1\right.$ for all $\left.i\right\}$, and it has edges between $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ if and only if there exists a unique i such that $\left|u_{i}-v_{i}\right|=1$ or $d_{i}-1$, and for all $j \neq i, u_{j}=v_{j}$. A two-dimensional hypertorus Q_{2}^{d} is simply a torus, and if $d_{1}=d_{2}=\cdots=d_{n}=2$, then Q_{n}^{d} is an n-dimensional hypercube.rA

Gregor and Dvovrák [1] proved that when $n \geq 3$, the n-dimensional hypercube is balanced paired $\left(\left\lceil\frac{n}{2}\right\rceil-1\right)$-to- $\left(\left\lceil\frac{n}{2}\right\rceil-1\right)$ disjoint path coverable. Kronenthal and Wong [2] proved that if $d_{1} \geq 3$ and $d_{2} \geq 3$, then Q_{2}^{d} is balanced paired 2-to- 2 disjoint path coverable if both d_{i} are even, and is paired 2 -to- 2 disjoint path coverable otherwise. The main conjecture is given by the following.

Conjecture 0.1. Let $n \geq 2$ be an integer, and let $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be an n-tuple of integers such that $d_{i} \geq 3$ for all $i=1,2, \ldots, n$. If $d_{1}, d_{2}, \ldots, d_{n}$ are not all even, then $Q_{n}^{\mathbf{d}}$ is paired n-to-n disjoint path coverable. Otherwise, Q_{n}^{d} is balanced paired n-to-n disjoint path coverable.

This conjecture is the strongest possible in the sense that $Q_{n}^{\mathbf{d}}$ cannot be $(n+1)$-to- $(n+1)$ disjoint path coverable. This is because if we pick the endpoints $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}, \mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{n}$ to be neighbors of \mathbf{s}_{n+1}, then there is obviously no path that joins \mathbf{s}_{n+1} with \mathbf{t}_{n+1} since every vertex in Q_{n}^{d} has degree $2 n$.

For $n \geq 3$, Kronenthal and Wong [2] showed that the truth of Conjecture 0.1 hinges on the base cases when d_{i} are small.

Theorem 0.2. Let $n \geq 2$ be an integer, and let $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be an n-tuple of integers such that $d_{i} \geq 3$ for all $i=1,2, \ldots, n$.

1. Suppose $d_{1}, d_{2}, \ldots, d_{n}$ are not all even. If Q_{n}^{d} is paired n-to-n disjoint path coverable for all \mathbf{d} such that $3 \leq d_{1}, d_{2}, \ldots, d_{n} \leq 4 n$, then $Q_{n}^{\mathbf{d}}$ is paired n-to-n disjoint path coverable for all d.
2. Suppose $d_{1}, d_{2}, \ldots, d_{n}$ are all even. If Q_{n}^{d} is balanced paired n-to-n disjoint path coverable for all \mathbf{d} such that $3 \leq d_{1}, d_{2}, \ldots, d_{n} \leq 4 n$, then $Q_{n}^{\mathbf{d}}$ is balanced paired n-to- n disjoint path coverable for all \mathbf{d}.

This project is suitable for an REU project on experimental mathematics, since the base cases specified by Theorem 0.2 can be checked with efficient computer programming.

References

[1] P. Gregor and T. Dvovrák, Path partitions of hypercubes, Information Processing Letters 108 (2008), 402-406.
[2] B. Kronenthal and T. W. H. Wong, Paired many-to-many disjoint path covers of hypertori, Discrete Applied Mathematics 218 (2017), 14-20.

