Constructing matrices with prescribed number of bases

Let A be a matrix of size $r \times n$ over a field. Assume that A has full row rank, so we have $0<r \leq n$ as a consequence. Let b be the number of invertible $r \times r$ submatrices of A. What are the possible values of b ? From basic linear algebra and simple counting, we know that b must be between 1 and $\binom{n}{r}$ inclusively.

A more interesting and challenging question is whether every such b is attainable. In other words, if we are given a triple of positive integers (n, r, b), where $0<r \leq n$ and $1 \leq b \leq\binom{ n}{r}$, can we always build a matrix A of size $r \times n$ over a field, such that the number of invertible $r \times r$ submatrices is exactly b ? We denote such a matrix as an (n, r, b)-matrix.

In fact, the proposed question is a restricted version of what Welsh [2] asked: Given a triple of positive integers (n, r, b), where $0<r \leq n$ and $1 \leq b \leq\binom{ n}{r}$, does there always exists a matroid with n elements, rank r, and exactly b bases? Such a matroid would be called an (n, r, b)-matroid.

Unfortunately, the answer to this question is known to be negative. According to Mayhew and Royle [1], Anna de Mier answered Welsh's question negatively by proving that an (n, r, b)matroid does not exist when $(n, r, b)=(6,3,11)$. This implies that a $(6,3,11)$-matrix does not exist. However, Mayhew and Royle conjectured that this is the lone counterexample.

Conjecture 0.1 ([1]). An (n, r, b)-matroid exists for all $0<r \leq n$ and $1 \leq b \leq\binom{ n}{r}$ except $(n, r, b)=(6,3,11)$.

We strengthen Conjecture 1.1 as follows.
Conjecture 0.2. An (n, r, b)-matrix exists for all $0<r \leq n$ and $1 \leq b \leq\binom{ n}{r}$ except $(n, r, b)=(6,3,11)$.

We have shown that Conjecture 1.2 holds for all $1 \leq b \leq\binom{ r+3}{r}$, except for $(n, r, b)=$ $(6,3,11)$. We also proved that Conjecture 1.2 holds when r and b are large with respect to k. We strengthen this result into the following theorem.

Theorem 0.3. For each fixed $k \geq 3$, there exists $R \in \mathbb{N}$ such that for all $r \geq R,(r+k, r, b)$ matrices exist for all $1 \leq b \leq\binom{ r+\bar{k}}{r}$.

The proof techniques involved were induction arguments, with base cases taken care of by computer programming.

References

[1] D. Mayhew and G. F. Royle, Matroids with nine elements, J. Combinatorial Theory Ser. B 98 (2008), 415-431.
[2] D. Welsh, Combinatorial problems in matroid theory, Combinatorial Math. and its Applications (Proc. Conf. Oxford 1969), Academic Press, London, 1971.

