MORAVIAN UNIVERSITY

Student Mathematics Conference

Saturday February 18, 2023 Moravian University, Bethlehem, PA

> Sponsored by the Moravian chapter of Pi Mu Epsilon and Moravian University

MORAVIAN UNIVERSITY STUDENT MATHEMATICS CONFERENCE

February 18, 2023

9:00 am Registration

Sally Breidegam Miksiewicz Center for Health Sciences (SMC) Second

Floor

9:30 am Welcoming Remarks

Diane Husic,

Dean of the Center for Scholarship, Research, and Creative Endeavors

Moravian University

9:45 am Mathematical Jigsaw Puzzles

Darren A. Narayan,

Professor of Mathematics,

Rochester Institute of Technology

10:45 am Coffee Break

11:00 am Student Talks – Two parallel sessions

12:00 pm *Lunch*

1:00 pm Social Event

Darren A. Narayan Mathematical Jigsaw Puzzles

Tilings problems are the jigsaw puzzles of a mathematician. For hundreds of years such problems have produced an array of beautiful and intriguing patterns. Problem B-3 from the 1991 William Lowell Putnam Examination asked: "Does there exist a natural number L, such that if m and n are integers greater than L, then an $m \times n$ rectangle may be expressed as a union of 4×6 and 5×7 rectangles, any two of which intersect at most along their boundaries?" The answer is yes, and a solution appeared in the Monthly showing that L = 2213 suffices. However, using an array of different algebraic and combinatorial tools, we will show that L can be significantly reduced to 33.

* This is joint work with Rachell Ashley, Aisosa Ayela-Uwangue, Frances Cabrera, Carol Callesano, Grant Dietert, and Allen Schwenk

About our Conference

This conference sponsored by Moravian University and is organized by the Pennsylvania Omicron (Moravian University) chapter of Pi Mu Epsilon, the national mathematics honorary. The members of the chapter are:

Gabrielle Demchak Shane Houghton Garrison Koch Matthew Perez Victoria Samuels Justin Szaro Calum Taft-Lockard

Student Talk Schedule

	SMC	SMC
	Room 223	Room 129/131
11:00 to 11:15	Optimizing the distance between tomato plants to limit aphid infestations through volatile compounds Mary Ball Lafayette College	Average Class Number of Almost Pythagorean Triples Cathy Barrish, Charles Ohanian, and Amanda Sodl Muhlenberg College
11:20 to 11:35	Identifying critical thresholds for crown of thorns starfish concentration in reefs Julianna Hoitt Lafayette College	Sierpinski and Riesel Numbers in Narayan's Cow Sequence Katherine Franzone Cedar Crest College
11:40 to 11:55	The Colimitation Theory of Mutualism Connor Ritchie Syracuse University	Knight's Tours on Non-Orientable Surfaces Zachary Lague Stockton University

Mary Ball, Lafayette College

Optimizing the distance between tomato plants to limit aphid infestations through volatile compounds

Plants can warn neighboring plants about infections and herbivory through volatile compounds. Volatile compounds could be used in agriculture as a sustainable form of pest control. This model optimizes the distance tomato plants should be placed to limit aphid infestations using methyl salicylate, a naturally produced volatile compound.

Cathy Barrish, Charles Ohanian, and Amanda Sodl, Muhlenberg College

Average Class Number of Almost Pythagorean Triples

An Almost Pythagorean Triple is a set of 4 integers, a, b, c, D, that satisfies $a^2 + b^2 = c^2 + D$. Inspired by Gauss' work with average class numbers, we set out to develop a formula for the average class number of Almost Pythagorean Triples (APT's), specifically when D < 0. Using a double summation method, we found that the average class number of APT's with 0 < -D < N can be approximated using $\pi/6\sqrt{N}$ when N is large.

Katherine Franzone, Cedar Crest College

Sierpinski and Riesel Numbers in Narayan's Cow Sequence

Narayana's Cow Sequence is defined by the recurrence relation $N_1 = 1$, $N_2 = 1$, $N_3 = 1$, and $N_t = N_{t-1} + N_{t-3}$ for all t > 3. A Sierpinski number is an odd integer k for which $k * 2^n + 1$ is composite for all positive integers n. Similarly, a Riesel number is an odd integer k for which $k * 2^n - 1$ is composite for all positive integers n. In this talk, we will show that there are infinitely many Sierpinski numbers and infinitely many Riesel numbers in Narayana's Cow Sequence.

Julianna Hoitt, Lafayette College

Identifying critical thresholds for crown of thorns starfish concentration in reefs

Crown of thorns starfish are a serious threat to reefs that must be controlled before they cause irrevocable damage. Using mathematical optimization, the population size that should be monitored the closest was determined. This result may allow conservationists to allocate resources most effectively to save reefs from further destruction.

Zachary Lague, Stockton University

Knight's Tours on Non-Orientable Surfaces

A closed knight's tour is a loop formed by a knight traveling to every square on a chess board and back to its starting position. This research generalizes this concept to non-orientable surfaces and attempts to determine which homotopy classes of loops formed by closed knight's tours are possible. This talk will discuss which dimensions of Möbius strip and Klein bottle chess boards allow a null-homotopic tour. Informally, a knight's tour is null-homotopic if the loop along which the knight traveled can be shrunk to a point by continuously deforming the path on the board.

Connor Ritchie, Syracuse University

The Colimitation Theory of Mutualism

My talk will concern modelling interactions between two cooperating species, using methods from differential equations and game theory to describe changes in population and other parameters.

Participating Institutions

Cedar Crest College
DeSales University
East Stroudsburg University
Franklin & Marshall College
Lafayette College
Messiah University
Moravian University
Muhlenberg College
Stockton University
Syracuse University